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SMALL DEHN SURGERY AND SU(2)

JOHN A. BALDWIN, ZHENKUN LI, STEVEN SIVEK, AND FAN YE

Abstract. We prove that the fundamental group of 3-surgery on a nontrivial knot in S3

always admits an irreducible SU(2)-representation. This answers a question of Kronheimer
and Mrowka dating from their work on the Property P conjecture. An important ingredient
in our proof is a relationship between instanton Floer homology and the symplectic Floer
homology of genus-2 surface diffeomorphisms, due to Ivan Smith. We use similar arguments
at the end to extend our main result to infinitely many surgery slopes in the interval [3, 5).

1. Introduction

The SU(2)-representation variety

R(Y ) = Hom(π1(Y ), SU(2))

associated with a 3-manifold Y is an object of central importance in instanton gauge theory.
A basic question about such varieties is whether they contain irreducible representations.
A homomorphism into SU(2) is reducible if and only if it has abelian image, inspiring the
following definition:

Definition 1.1. A 3-manifold Y is SU(2)-abelian if every ρ ∈ R(Y ) has abelian image.1

In particular, R(Y ) contains an irreducible if and only if Y is not SU(2)-abelian.

The classification of SU(2)-abelian 3-manifolds is a wide-open problem, even among Dehn
surgeries on knots.2 In their proof of the Property P conjecture [KM04b], Kronheimer and
Mrowka proved that if K is a nontrivial knot in S3 then S3

1(K) is not SU(2)-abelian (hence,
not a homotopy sphere). They then strengthened this result in [KM04a], proving under the
same hypothesis that S3

r (K) is not SU(2)-abelian for any rational number r ∈ [0, 2].

It is natural to ask whether this also holds for larger values of r. Kronheimer and Mrowka
explicitly posed this question in [KM04a] for the next two integers, r = 3 and 4, noting that
it fails for r = 5 because 5-surgery on the right-handed trefoil is a lens space. Baldwin and
Sivek answered half of this question in [BS19], proving that S3

4(K) is not SU(2)-abelian for
any nontrivial knot K ⊂ S3. Our main theorem answers the remaining half:

Theorem 1.2. S3
3(K) is not SU(2)-abelian for any nontrivial knot K ⊂ S3.

Remark 1.3. We ultimately expect that r-surgery on a nontrivial knot is not SU(2)-abelian
for any rational number r ∈ [0, 5). Our techniques can be used to prove this for infinitely
many additional slopes in the interval [3, 5), as discussed in §1.2.

JAB was supported by NSF FRG Grant DMS-1952707.
1If b1(Y ) = 0 then ρ has abelian image if and only if it has cyclic image.
2Though see [LPCZ21, BS21] and [SZ19] for progress on this problem in the cases of toroidal homology

spheres and non-hyperbolic geometric manifolds, respectively.
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Our proof involves a novel blend of ingredients, including a relationship between instanton
Floer homology and the symplectic Floer homology of genus-2 surface diffeomorphisms, due
to Smith [Smi12]; ideas of Baldwin–Hu–Sivek from their recent work on cinquefoil detection
[BHS21]; and new results of Li–Ye relating the graded Euler characteristics of instanton and
Heegaard knot Floer homology [LY21b, LY21a]. Along the way, we partially characterize
instanton L-space knots of genus 2 (Theorem 2.1 and Remark 2.6), and prove several other
results (Proposition 3.2, and Theorems 4.1 and 5.1) which may be of independent interest.
We outline our proof of Theorem 1.2 in detail below.

1.1. Proof outline. SupposeK ⊂ S3 is a nontrivial knot. Let us assume for a contradiction
that S3

3(K) is SU(2)-abelian. This surgered manifold is thus an instanton L-space [BS18b].
It then follows from [BS19] thatK is fibered and strongly quasipositive of genus 1 or 2. If the
genus is 1, then K is the right-handed trefoil, but 3-surgery on this trefoil is Seifert fibered
with base orbifold S2(2, 3, 3) and is therefore not SU(2)-abelian, by [SZ19], a contradiction.
We similarly rule out the possibility that K is the cinquefoil T2,5.

Thus, K 6∼= T2,5 is a genus-2 instanton L-space knot. Recent work of Li and Ye [LY21c]
then implies that K has Alexander polynomial

∆K(t) = t2 − t+ 1− t−1 + t−2,

from which we conclude as in [BHS21] that K is a hyperbolic knot. Let (S, h) be an abstract
open book corresponding to the fibration associated with K. The hyperbolicity of K implies
that the monodromy h is freely isotopic to a pseudo-Anosov homeomorphism ψ : S → S.

In [Smi12], Smith proved that (a version of) the instanton Floer homology of the mapping
torus of a genus-2 surface diffeomorphism encodes the symplectic Floer cohomology of the
diffeomorphism. We use Smith’s result, together with a calculation of the framed instanton
homology I#(S3

0(K), µ), to prove that the homeomorphism ψ has no fixed points, following
ideas in [BHS21]. We then apply results from [BHS21] to conclude that K is doubly periodic
with unknotted quotient A and axis B, where A and B have linking number 5.

We may therefore express S3
3(K) as the branched double cover of the lens space

L = S3
3/2(A)

∼= L(3, 2),

branched along the primitive knot J ⊂ L induced by B in this surgery on A,

(1.1) S3
3(K) ∼= Σ(L, J).

Under the assumption that S3
3(K) is SU(2)-abelian, we prove that every representation

ρ : π1(L \N(J)) → SU(2)

which sends a fixed meridian of J to i has finite cyclic image. There are exactly |H1(L)| = 3
such representations. We prove that these representations are nondegenerate as generators
of the instanton knot homology of J , and thereby conclude that J is an instanton Floer
simple knot, meaning that

dimC KHI (L, J) = dimC I
#(L) = 3.

We deduce that J is rationally fibered, and that the graded Euler characteristic of KHI (L, J)
is given by

χgr(KHI (L, J)) = t−n + 1 + tn,

for some n = g(F ) + 1, where F is a minimal-genus rational Seifert surface for J .
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In recent work [LY21b], Li and Ye proved an equality between the graded Euler charac-
teristics of instanton knot homology and (Heegaard) knot Floer homology,

χgr(ĤFK (L, J)) = ±χgr(KHI (L, J)).

We combine this with constraints on the graded Euler characteristic of knot Floer homology
to conclude that n = 1. Thus, J has (rational) genus 0, which implies that its fibered exterior
is a solid torus. It follows that Σ(L, J), and hence 3-surgery on K, is a lens space. Since
K is doubly periodic and has a lens space surgery, a result of Wang and Zhou [WZ92] says
that K must be a torus knot, a contradiction.

1.2. Other small surgeries. As mentioned above, we suspect that if K ⊂ S3 is a nontriv-
ial knot, then S3

r (K) is not SU(2)-abelian for any rational r ∈ [0, 5). Long after Kronheimer
and Mrowka’s proof for r ∈ [0, 2], Baldwin and Sivek proved this [BS19] for the dense subset
of the interval (2, 3) consisting of rationals with prime power numerators. Proving it for the
corresponding subset of [3, 5) is much harder, as explained in §6. Indeed, our main theorem
concerns the single case r = 3. Nevertheless, our techniques can be used to extend Theorem
1.2 to infinitely many surgery slopes in both [3, 4) and [4, 5), and even to a special dense
subset of slopes in (5, 7). Our main result in this vein is:

Theorem 1.4. Let p and q be coprime positive integers with p/q ∈ [3, 7), where p is a prime
power. If either

• p is even,
• p is odd and gcd(p, 5) = 1 and p/q ∈ [4, 5), or
• p is odd and gcd(p, 5) = 1 and p/q ∈ [3, 4) with 23p − 9 ≤ 80q ≤ 25p + 9,

then S3
p/q(K) is not SU(2)-abelian for every nontrivial knot K ⊂ S3.

The inequality in Theorem 1.4 is satisfied for p/q ∈ [16/5, 80/23) ⊂ [3, 4). It is satisfied for
p/q = 3 as well, so this theorem recovers Theorem 1.2. Note that Theorem 1.4 also applies
to the slopes 4, 7/2, and 9/2. Together with the results mentioned above, concerning the
intervals [0, 2] and (2, 3), this proves that:

Corollary 1.5. If K ⊂ S3 is a nontrivial knot then S3
r (K) is not SU(2)-abelian for any

integer or half-integer r < 5.

1.3. Organization. In §2, we prove that if K 6∼= T2,5 is an instanton L-space knot of genus
2, then K is doubly-periodic with unknotted quotient. We then use this in §3 to show that
if 3-surgery on a nontrivial knot is SU(2)-abelian, then this surgery is the branched double
cover of a knot J ⊂ L(3, 2); in fact, we prove something more general (Proposition 3.2). In
§4, we prove that such J are instanton Floer simple (Theorem 4.1). In §5, we combine these
results with an understanding of instanton Floer simple knots in lens spaces (Theorem 5.1)
to prove Theorem 1.2. Finally, in §6, we extend our main theorem to other surgery slopes
in [3, 5), proving Theorem 1.4.

1.4. Acknowledgements. We thank Ying Hu for helping to pioneer the ideas in [BHS21]
which inspired many of the proofs in this paper. We also thank Ken Baker, Yi Ni, and Jake
Rasmussen for helpful discussions. Finally, thanks to Peter Kronheimer and Tom Mrowka
for posing the interesting question at the heart of this work, and for their encouragement.
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2. Genus two L-space knots

Recall that a rational homology 3-sphere Y is an instanton L-space if its framed instanton
homology satisfies

dimC I
#(Y ) = |H1(Y )|.

A knot K ⊂ S3 is said to be an instanton L-space knot if S3
r (K) is an instanton L-space for

some rational number r > 0. Such knots were studied extensively in [BS19]; in particular, it
was shown there [BS19, Theorem 1.15] that instanton L-space knots are fibered and strongly
quasipositive.

Our main goal in this section is to prove the following:

Theorem 2.1. Let K ⊂ S3 be an instanton L-space knot of genus 2. Then K is fibered
and strongly quasipositive, with Alexander polynomial

∆K(t) = t2 − t+ 1− t−1 + t−2.

If K 6∼= T2,5, then there exists a pseudo-Anosov 5-braid β whose closure B = β̂ is an unknot
with braid axis A, such that K is the lift of A in the branched double cover

Σ(S3, B) ∼= S3.

In particular, K is a doubly periodic knot with unknotted quotient A and axis B.

AHeegaard Floer analogue of this result was proved in [BHS21, §3]. Our proof of Theorem
2.1 will largely follow the arguments there, and we will refer to specific parts of [BHS21] for
steps whose proofs are the same in either setting. We begin with some preliminary results.

Lemma 2.2. Let K be an instanton L-space knot of genus 2. Then K is fibered and strongly
quasipositive, with Alexander polynomial

∆K(t) = t2 − t+ 1− t−1 + t−2,

and either K ∼= T2,5 or K is hyperbolic.

Proof. The claims that K is fibered and strongly quasipositive are [BS19, Theorem 1.15], as
discussed above. The Alexander polynomial ∆K(t) is determined by [LY21c, Theorem 1.9],
which says that there are integers k ≥ 0 and

nk > nk−1 > · · · > n0 = 0 > n−1 > · · · > n−k,

with n−j = −nj for all j, such that the instanton knot homology KHI (K) satisfies

dimCKHI (K, i) =

{
1, i = nj for some j

0, otherwise,

with the nonzero summands KHI (K,nj) supported in alternating Z/2Z gradings. We know
that KHI (K, 2) 6= 0 since K has genus 2 [KM10b, Proposition 7.16], and then KHI (K, 1) 6=
0 since K is fibered [BS18a, Theorem 1.7], so k = 2 and (n2, n1, n0) = (2, 1, 0). Then
KHI (K) has graded Euler characteristic

∑

j∈Z

χ(KHI (K, j)) · tj = ±∆K(t)

[KM10a, Lim10], so the normalization ∆K(1) = 1 forces ∆K(t) to be as claimed. Since K is
fibered with this particular Alexander polynomial, it is either T±2,5 or hyperbolic by [BHS21,
Lemma 3.2]. The case of T−2,5 is ruled out as this knot is not strongly quasipositive. �
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Lemma 2.3. Let K be an instanton L-space knot of genus 2, and let w → S3
0(K) be a

Hermitian line bundle such that c1(w) is Poincaré dual to the meridian µ of K. Then

dimC I∗(S
3
0(K))w = 6,

where I∗ refers here to the version of instanton homology for admissible bundles described,
for example, in [Don02, §5.6].

Proof. We know that 3-surgery on K is an instanton L-space [BS19, Proposition 7.11], while
neither 1- nor 2-surgery on K is an instanton L-space [BS19, Proposition 7.12]. It follows
in the language of [BS20] that ν♯(K) = r0(K) = 3, meaning that

dimC I
#(S3

p/q(K)) =

{
p, p/q ≥ 3

6q − p, p/q < 3

for all coprime integers p, q with q ≥ 1. In particular we have

dimC I
#(S3

0(K), µ) = 6

by [BS20, Proposition 3.3].

To prove the lemma, we then relate I∗(S
3
0(K))w to I#(S3

0(K), µ) using Fukaya’s connected
sum theorem for instanton homology [Sca15, Theorem 1.3]. To be precise, since H2(S

3
0(K))

is generated by a closed surface of genus 2 which is dual to µ, the special case of this theorem
discussed in [Sca15, §9.8] says that

I#(S3
0(K), µ)⊗H∗(S

4) ∼= I∗(S
3
0(K))w ⊗H∗(S

3)

as relatively Z/4Z-graded vector spaces over any field of characteristic zero. It follows that
dimC I∗(S

3
0(K))w = 6 as claimed. �

Recall for the proposition below that instanton L-space knots are fibered.

Proposition 2.4. Let K 6∼= T2,5 be an instanton L-space knot of genus 2. Let (S, h) be an
open book encoding the fibration of its complement. Then the monodromy h is freely isotopic
to a pseudo-Anosov homeomorphism

ψ : S → S

with no fixed points.

Proof. The complement S3\K is hyperbolic, by Lemma 2.2. It follows that the monodromy
h is freely isotopic to a pseudo-Anosov homeomorphism

ψ : S → S,

by work of Thurston [Thu98]. SinceK is strongly quasipositive, also by Lemma 2.2, [BHS21,
Lemma 3.3] says that the stable foliation of ψ has some number n ≥ 2 of boundary prongs.

As discussed in [BHS21, §2], the fact that n ≥ 2 means that the map ψ extends naturally
to a pseudo-Anosov homeomorphism

ψ̂ : Ŝ → Ŝ

of the closed genus-2 surface obtained from S by capping off its boundary with a disk. The
stable foliation of ψ extends across the disk to a stable invariant foliation for ψ̂ in which
the n boundary prongs extend to n prongs meeting at a singularity p in the capping disk
(except that p is a smooth point if n = 2). Moreover, p is a fixed point of ψ̂.
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Note that the mapping torus Yψ̂ of ψ̂ is homeomorphic to 0-surgery on K,

Yψ̂
∼= S3

0(K),

by a map which identifies the suspension of p with the meridian µ of K in the 0-surgery.
Smith [Smi12, Corollary 1.8] proved in this case (or, more generally, for any genus-2 mapping
torus which is a homology S1×S2 with a distinguished section coming from a marked point
on the surface) that there is an isomorphism (with C coefficients) of the form

(2.1) HF inst(E → Yψ̂)
∼= C⊕ HF ∗

symp(ψ̂)⊕ C.

Here, E → Yψ̂ is the nontrivial SO(3) bundle with w2 dual to µ; HF
∗
symp(ψ̂) is the symplectic

Floer cohomology of ψ̂, defined via any area-preserving diffeomorphism (for any area form

on Ŝ) in the mapping class of ψ̂; and HF inst is the version of instanton homology used by
Dostoglou and Salamon in [DS94]. The latter is defined using a slightly larger gauge group
than the determinant-1 gauge transformations defining I∗, and is thus the quotient of the
relatively Z/8Z-graded I∗ by a degree-4 involution. It follows, in particular, that

dimCHF inst(E → Yψ̂) =
1

2
· dimC I∗(S

3
0(K))w,

where w → S3
0(K) is a Hermitian line bundle with c1 dual to µ, as in Lemma 2.3. The same

lemma says that dimC I∗(S
3
0(K))w = 6, from which it follows that

dimCHF inst(E → Yψ̂) = 3,

and therefore that

(2.2) dimCHF ∗
symp(ψ̂) = 1,

by the isomorphism (2.1).

The symplectic Floer cohomology of pseudo-Anosov homeomorphisms was computed by
Cotton-Clay in [CC09, §3]. In particular, given ψ̂ as above, Cotton-Clay defines in [CC09,

§3.2] a canonical smooth representative ψ̂sm of ψ̂ whose symplectic Floer chain complex

CF symp
∗ (ψ̂sm)

is freely generated by the fixed points of ψ̂sm and has trivial differential. This implies that

(2.3) HF ∗
symp(ψ̂)

∼= CF symp
∗ (ψ̂sm).

(This is proved in [CC09] with Z/2Z coefficients, but also holds in characteristic zero since

the differential vanishes for purely topological reasons.) Furthermore, ψ̂sm has the property

that each fixed point of ψ̂ is also a fixed point of ψ̂sm. The combination of (2.2) and (2.3)

therefore implies that ψ̂ has at most one fixed point. On the other hand, we know that p is
a fixed point of ψ̂ from the discussion above. It follows that this is the only fixed point of
ψ̂, which implies that the original map ψ has no fixed points. �

Remark 2.5. The proof of Proposition 2.4 is notably easier than that of the analogous
[BHS21, Theorem 3.5], at least modulo deep theorems by others. The reason is that the
work of Lee and Taubes [LT12] used in [BHS21] requires a monotonicity condition which
only applies in genus 3 or higher, so a trick is required to pass from the genus 2 case to the
higher genus case. By contrast, the references [DS94, Smi12] work perfectly well for genus-2
mapping tori, and in fact [Smi12, Corollary 1.8] only applies in genus 2.
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Remark 2.6. Suppose K 6∼= T2,5 is a genus-2 instanton L-space knot, (S, h) is an open
book associated to the fibration of its complement, and ψ : S → S a pseudo-Anosov map
isotopic to h. Proposition 2.4 says that ψ has no fixed points. Thus we can apply [BHS21,
Proposition 3.8], whose other hypotheses follow from Lemma 2.2, to conclude the following:

• the monodromy h has fractional Dehn twist coefficient c(h) = 1
4 ;

• the stable foliation of ψ has four prongs on ∂S, and two interior 3-pronged singu-
larities which are exchanged by ψ.

We will not need either of these properties in this article, but this may be independently
useful towards a characterization of genus-2 instanton L-space knots.

At this point, the proof of Theorem 2.1 proceeds in exactly the same way as that of its
Heegaard Floer analogue [BHS21, Theorem 3.1].

Proof of Theorem 2.1. The first few claims follow immediately from Lemma 2.2. To argue
that if K 6∼= T2,5 then there is a pseudo-Anosov 5-braid β with unknotted closure B = β̂ such
that K is the lift of the braid axis A to the branched double cover of B, we simply repeat
the proof of [BHS21, Theorem 3.1] verbatim. That proof relies only on the conclusions of
Proposition 2.4, so it applies equally well here. �

3. SU(2)-abelian surgeries and branched double covers

The conditions of being an instanton L-space and being SU(2)-abelian are closely related.
For surgeries on knots, we have the following:

Lemma 3.1. Let K ⊂ S3 be a knot, and suppose p and q are positive coprime integers such
that p is a prime power. If

Y = S3
p/q(K)

is SU(2)-abelian, then Y is an instanton L-space.

Proof. An SU(2)-abelian rational homology sphere Y is an instanton L-space whenever
π1(Y ) is cyclically finite, by [BS18b, Theorem 4.6]. This cyclical finiteness is satisfied if, for
example, H1(Y ) is cyclic of prime power order, by [BS18b, Proposition 4.9]. �

Our main goal is to prove that 3-surgery on a nontrivial knot in S3 is never SU(2)-abelian.
In this section we use Lemma 3.1, together what we proved about genus-2 instanton L-space
knots in §2, to reduce the problem to one about branched double covers of knots in the lens
space L(3, 2), as outlined in the introduction. In fact, we prove a substantially more general
result in Proposition 3.2 below. We will use this additional generality in §6 to address other
surgeries.

Proposition 3.2. Let K ⊂ S3 be a nontrivial knot, and suppose p, q are coprime positive
integers with p/q < 5, where p is an odd prime power. If

Y = S3
p/q(K)

is SU(2)-abelian, then:

• Y is not Seifert fibered,
• K is hyperbolic, and doubly periodic with unknotted quotient A, and
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• Y is homeomorphic to a branched double cover of the lens space

L = S3
p/2q(A) = L(p, 2q)

along some knot J ⊂ L which is homologous to 5 times the core of the solid torus
S3 \N(A) ⊂ L in the genus-1 Heegaard splitting of L along the surface ∂N(A).

Proof. Lemma 3.1 implies that Y is an instanton L-space; in particular, K is an instanton
L-space knot. It then follows from [BS19, Theorem 1.15] that

2g(K) − 1 ≤ p/q < 5,

which implies that K has genus 1 or 2.

We next observe that K is neither T2,3 nor T2,5. Indeed, p/q < 5 implies that

|abq − p| > 1, for (a, b) = (2, 3) and (2, 5).

Then (p/q)-surgeries on T2,3 and T2,5 are Seifert manifolds which are not lens spaces [Mos71].
Such surgeries cannot be SU(2)-abelian [SZ19, Remark 1.3]. We conclude that K is neither
T2,3 nor T2,5. Since T2,3 is the only genus-1 instanton L-space knot [BS19, Proposition 7.12],
it follows that K must be a genus-2 instanton L-space knot other than T2,5.

Theorem 2.1 then says thatK is hyperbolic, and doubly periodic with unknotted quotient
A and axis B, where A and B have linking number 5. In particular, there is an involution
τ : S3 → S3 with τ(K) = K whose fixed set is the axis B. This involution extends from
the exterior S3 \N(K) across the solid torus realizing the Dehn surgery producing

Y = S3
p/q(K),

and it acts freely on this solid torus since p is odd. Thus, τ induces an involution on Y with
fixed set B; the quotient of Y by this action is then the lens space

L = S3
p/2q(A)

∼= L(p, 2q)

obtained as (p/2q)-surgery on the unknotted quotient A. In particular, Y is homeomorphic
to a branched double cover of L along the image J of B in this lens space. The fact that A
and B have linking number 5 implies that J is homologous in H1(L) to 5 times the core of
the solid torus S3 \N(A) in the genus-1 Heegaard splitting of L along the surface ∂N(A).

Finally, we argue that

Y = S3
p/q(K)

is not Seifert fibered. Suppose that it is. Then Y is a lens space, by [SZ19, Remark 1.3]. In
this case, since K is doubly periodic (and thus admits a symmetry with 1-dimensional fixed
point set which is not a strong inversion) and has a nontrivial cyclic surgery, a theorem of
Wang and Zhou [WZ92, Proposition 3] says that K must be a torus knot, a contradiction.

�

4. Branched double covers and Floer simple knots

Our goal in this section is to prove Theorem 4.1 below. This result, in combination with
Proposition 3.2, implies that if 3-surgery on a nontrivial knot is SU(2)-abelian, then the
surgered manifold is the branched double cover of an instanton Floer simple knot in L(3, 2).
We will combine this with an understanding of Floer simple knots in this lens space in §5
to complete the proof of Theorem 1.2, as outlined in the introduction, and we will apply
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Theorem 4.1 to infinitely many additional surgery slopes in §6. The various results in this
section may be of independent interest.

Theorem 4.1. Suppose L is a rational homology sphere in which H1(L) is cyclic of order
an odd prime power, and let J ⊂ L be a primitive knot. If the branched double cover Σ(L, J)
is SU(2)-abelian and satisfies

|H1(Σ(L, J))| = |H1(L)|,

then
dimC KHI (L, J) = |H1(L)|.

In other words, the knot J ⊂ L is instanton Floer simple.

We start by clarifying some of the terminology and notation in the statement of Theorem
4.1, explaining in particular why a primitive knot has a unique branched double cover.

For the rest of this section, L will refer to a rational homology sphere, and J to a knot
in L. We say that J ⊂ L is primitive if its homology class [J ] generates H1(L;Z). In this
case, an exercise in algebraic topology shows that

H1(L \N(J)) ∼= Z.

This group is generated by the homology class of some peripheral curve α ⊂ ∂N(J). Dehn
filling along α produces an integral homology sphere Z, and if C is the core of this filling,
then α is a meridian µC of C, and we have a homeomorphism

Z \N(C) ∼= L \N(J).

Since Dehn filling Z \N(C) along the meridian µJ of J recovers L, it follows that

[µJ ] = |H1(L)| · [µC ]

in the first homology of this knot complement. We will use the notation established in this
paragraph throughout the rest of this section.

Lemma 4.2. Suppose H1(L) has odd order and that J ⊂ L is primitive, and let C ⊂ Z
be as above. Then J ⊂ L and C ⊂ Z have unique branched double covers, Σ(L, J) and
Σ(Z,C), which satisfy

H1(Σ(L, J)) ∼= H1(Σ(Z,C))⊕H1(L).

Proof. Since the knot C ⊂ Z is nullhomologous, we can take a meridian µC and longitude
λC in ∂N(C) and write

µJ = (µC)
p(λC)

q

in π1(∂N(C)) for some relatively prime integers p and q, where we reverse the orientation
of C if necessary to arrange p ≥ 0. Then H1(L) ∼= Z/pZ.

To define Σ(L, J), we first consider the unique connected double cover M → L \N(J) of
L \N(J), specified by the kernel of the map

π1(L \N(J)) → H1(L \N(J)) ∼= Z
mod 2
−−−−→ Z/2Z.

Since [µC ] generates H1(L \N(J)) and

[µJ ] = |H1(L)| · [µC ],

with |H1(L)| odd, it follows that µJ is sent to 1 under this map. Thus, µ2J lifts to a simple
closed curve in M . The unique branched double cover Σ(L, J) is then formed by Dehn
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filling M along this lift of µ2J . We similarly define Σ(Z,C) by Dehn filling M along a lift of
µ2C .

Since C is nullhomologous in Z, its lift C̃ ⊂ Σ(Z,C) is also nullhomologous, so we define
µC̃ and λC̃ to be its meridian and longitude in the boundary of

M = Σ(Z,C) \N(C̃).

These curves lift µ2C and λC . If µJ = (µC)
p(λC)

q as above, then µ2J = (µ2C)
p(λC)

2q lifts to

µJ̃ = (µC̃)
p(λC̃)

2q

and so Σ(L, J) is the result of (p/2q)-surgery on C̃ ⊂ Σ(Z,C). Since C̃ is nullhomologous
and H1(L) ∼= Z/pZ, this completes the proof. �

Remark 4.3. We will often use the shorthand Σ(J) for Σ(L, J) out of convenience.

The lemma below will be useful in several places.

Lemma 4.4. Suppose H1(L) has odd order and J ⊂ L is primitive. Then

|H1(Σ(L, J))| = |H1(L)| · |∆J(−1)|,

where ∆J(t) is the symmetrized Alexander polynomial of J .

Proof. Let C ⊂ Z be as above. By [BZ03, Theorem 8.21], we have that

|H1(Σ(Z,C))| = |∆C(−1)| = |∆J(−1)|,

where the second equality follows from the fact that C and J have homeomorphic comple-
ments and the Alexander polynomial depends only on the complement. Then

|H1(Σ(L, J))| = |H1(L)| · |H1(Σ(Z,C))| = |H1(L)| · |∆J(−1)|,

by Lemma 4.2. �

In the results below, we view SU(2) as the group of unit quaternions.

Proposition 4.5. Suppose H1(L) has odd order, that J ⊂ L is primitive, and that

|H1(Σ(L, J))| = |H1(L)|.

Then every representation

ρ : π1(L \N(J)) → SU(2)

with image in the binary dihedral group {eiθ} ∪ {eiθj} actually has cyclic image. Moreover,
there are exactly |H1(L)| such representations satisfying ρ(µJ) = i.

Proof. Let C ⊂ Z be as above, so that [µC ] generates H1(L \N(J)) ∼= Z and

[µJ ] = |H1(L)| · [µC ].

By Lemma 4.4, we have |∆J(−1)| = |∆C(−1)| = 1. Therefore |H1(Σ(C))| = 1. It follows
that there are no non-abelian representations

π1(Z \N(C)) → SU(2)

with binary dihedral image, since the number of such conjugacy classes is

|H1(Σ(C))| − 1

2
.
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This was originally proved for knots in S3 by Klassen [Kla91, Theorem 10], whose proof
makes essential use of the Wirtinger presentation; Boden and Friedl [BF08, Corollary 1.3]
give a generalization whose proof applies equally well to knots in any integral homology
sphere. In any case, since L \N(J) ∼= Z \N(C), we conclude that there are no non-abelian
binary dihedral representations of π1(L \N(J)) either. In particular, every binary dihedral
representation of π1(L \N(J)) has image in the cyclic group {eiθ}.

If ρ is such a representation, then (since it has abelian image) it factors through a map

H1(L \N(J)) ∼= Z → SU(2),

whose domain is generated by [µC ]. It follows that ρ is uniquely determined by its evaluation
at µC , and that

ρ(µJ) = ρ(µC)
|H1(L)|.

If we require that ρ(µJ) = i = eiπ/2, then the possible ρ are specified by

ρ(µC) = exp

(
i ·

π
2 + 2πm

|H1(L)|

)
, m = 0, 1, . . . , |H1(L)| − 1,

and the proposition follows. �

The following is a mild adaptation of [Zen17, Proposition 3.1].

Lemma 4.6. Suppose H1(L) has odd order, that J ⊂ L is primitive, and that Σ(L, J) is
an SU(2)-abelian rational homology sphere. Let

ρ : π1(L \N(J)) → SU(2)

be a representation satisfying ρ(µJ) = i. Then the image of

ad ρ : π1(L \N(J)) → SO(3)

is either cyclic or dihedral, and has order 2n for some odd integer n dividing |H1(Σ(J))|.

Proof. We have a short exact sequence of groups

1 → π1(M)
p∗
−→ π1(L \N(J))

m
−→ Z/2Z → 1

where

M
p
−→ L \N(J)

is the unique connected double covering. The class µ2J belongs to ker(m) = p∗π1(M), since
the homology class [µ2J ] = 2[µJ ] is zero mod 2, so we can view the normal closure ⟪µ2J⟫ as
a subgroup of π1(M). Upon passing to quotients, we obtain a short exact sequence

1 → π1(Σ(J)) →
π1(L \N(J))

⟪µ2J⟫
→ Z/2Z → 1.

Since Σ(J) is SU(2)-abelian, and H1(Σ(J)) has odd order by Lemma 4.2 and the oddness
of |H1(L)|, we may conclude [Zen17, Lemma 3.2] that every representation

π1(Σ(J)) → SO(3)

has cyclic image. (To see this, note that every representation π1(Σ(J)) → SO(3) lifts to an
SU(2) representation, since the obstruction to lifting belongs to

H2(Σ(J);Z/2Z) = 0.
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The image of this lift is abelian by assumption—and, hence, cyclic, since b1(Σ(J)) = 0—so
the projection of this image back down to SO(3) must then be cyclic as well.) Any such
representation therefore factors through H1(Σ(J)), which is finite of odd order, and so its
image also has odd order.

Now given

ρ : π1(L \N(J)) → SU(2)

with ρ(µJ) = i, we observe that ad ρ sends µ2J to ad(i2) = ad(−1) = 1, hence descends to a
representation

ρ̃ : π1(L \N(J))/⟪µ2J⟫→ SO(3)

with Im(ρ̃) = Im(ad ρ). The short exact sequence above yields a commutative diagram

1 π1(Σ(J))
π1(L\N(J))
⟪µ2J⟫

Z/2Z 1

SO(3)

r ρ̃

in which the top row is exact, and the image of r is an odd-order cyclic subgroup of SO(3).
We will write Im(r) = 〈x〉, where x ∈ SO(3) is an element of some odd order n ≥ 1 and n
divides |H1(Σ(J))|.

Every element of π1(L \N(J))/⟪µ2J⟫ has the form

g or α · g, g ∈ π1(Σ(J))

where α is some element of the nontrivial coset of the index-2 subgroup π1(Σ(J)). Thus, if
we write y = ρ̃(α), then

Im(ρ̃) = 〈x〉 ∪ (y · 〈x〉) .

If y ∈ 〈x〉 then Im(ρ̃) is cyclic of order n, but this is impossible since Im(ρ̃) contains the
element ρ̃(µJ) = ad(i) of order 2. Thus, 〈x〉 ∼= Z/nZ is an index-2 subgroup of Im(ρ̃) ⊂
SO(3), so Im(ρ̃) has order 2n, which is not a multiple of 4. Now, every finite subgroup of
SO(3) is either cyclic, dihedral, tetrahedral, octahedral, or icosahedral, and the latter three
have order 12, 24, or 60, so Im(ρ̃) must be cyclic or dihedral, of order 2n. �

Proposition 4.7. Suppose H1(L) has odd order, that J ⊂ L is primitive, and that Σ(L, J)
is an SU(2)-abelian rational homology sphere. Let

ρ : π1(L \N(J)) → SU(2)

be a representation satisfying ρ(µJ) = i. Then Im(ρ) is either cyclic or binary dihedral, and
has order 4n, where n divides |H1(Σ(L, J))|. Moreover, if

|H1(Σ(L, J))| = |H1(L)|,

then ρ has cyclic image.

Proof. By Lemma 4.6, we know that the image of the composition

π1(L \N(J))
ρ
−→ SU(2)

ad
−→ SO(3)

is either cyclic or dihedral, and has order 2n, where n divides |H1(Σ(J))| and is thus odd.
Note that Im(ρ) ⊂ SU(2) contains the kernel {±1} of the map

ad : SU(2) → SO(3),



SMALL DEHN SURGERY AND SU(2) 13

since ρ(µ2J) = −1. Therefore,

Im(ρ) = ad−1(Im(ad ρ))

has order 4n. If Im(ad ρ) ⊂ SO(3) is cyclic then so is Im(ρ) ⊂ SU(2), whereas if Im(ad ρ) ⊂
SO(3) is dihedral then Im(ρ) ⊂ SU(2) is binary dihedral.

For the last assertion, if |H1(Σ(L, J))| = |H1(L)| then Proposition 4.5 says that Im(ρ)
cannot be non-abelian and binary dihedral, so it must be cyclic. �

The instanton knot homology KHI (L, J) is half of an instanton homology group defined
as the Morse homology of a Chern–Simons functional on an associated space of connections.
As discussed in [KM10b, §7], the space of critical points of this functional can be identified
with a double cover of the representation variety

R(J) = {ρ : π1(L \N(J)) → SU(2) | ρ(µJ) = i}.

If every element of R(J) has cyclic image, then this is a trivial double cover. If in addition
each ρ ∈ R(J) is nondegenerate (corresponds to nondegenerate critical points of the Chern–
Simons functional in a suitable sense), then it follows that

(4.1) dimCKHI (L, J) ≤ |R(J)|.

We would thus like to know when each of the cyclic representations ρ ∈ R(J) is nondegen-
erate. This was addressed in the proof of [SZ17, Theorem 4.8]:

Lemma 4.8. Let

ρ : π1(L \N(J)) → SU(2)

be a representation with cyclic image, satisfying ρ(µJ) = i. If

dimRH
1(L \N(J); ad(ρ)) = 1,

then ρ is nondegenerate as a generator of KHI (L, J).

Proof. The proof of [SZ17, Theorem 4.8] establishes this for knots in S3, in the further
situation where we have introduced some holonomy perturbation Φ and replaced the condi-
tion ρ(µJ) = i with a more general condition described by some curve C ′ in the pillowcase
orbifold (i.e., the SU(2) character variety of T 2). The current setting is simpler, though:
we take Φ = 0 and the original condition ρ(µJ) = i, and then the proof works verbatim. �

Proposition 4.9. Suppose H1(L) has odd order and J ⊂ L is primitive. Let

ρ : π1(L \N(J)) → SU(2)

be a representation with cyclic image, satisfying ρ(µJ) = i. If the 2|H1(L)|-fold cyclic cover
of L \N(J) has first Betti number 1, then ρ is nondegenerate as a generator of KHI (L, J).

Proof. Let C ⊂ Z be as above, so that [µC ] generates H1(L \N(J)) ∼= Z and

[µJ ] = |H1(L)| · [µC ].

Since ρ has cyclic image, it follows that ad ρ has cyclic image as well and therefore factors
through H1(L \N(J)). Moreover, Im(ad ρ) has order n = 2r for some divisor r of |H1(L)|,
because it sends |H1(L)| · [µC ] = [µJ ] to the order-2 element ad(i).
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For each divisor d of n, let Yd be the d-fold cyclic cover of L \N(J) corresponding to the
index-d subgroup

ker

(
π1(L \N(J))

ad ρ
−−→ SO(3)

x 7→xn/d

−−−−−→ SO(3)

)
.

Boyer and Nicas [BN90, Theorem 1.1 and Remark 1.2] proved that

dimH1(L \N(J); ad ρ) = dimH1(L \N(J)) +
2

ϕ(n)

∑

d|n

µ
(n
d

)
b1(Yd),

where µ denotes the Möbius function. If we can show that b1(Yd) = 1 for all d | n, then the
sum on the right will be ∑

d|n

µ
(n
d

)
= 0

since n ≥ 2, and so we will have dimH1(L \N(J); ad ρ) = 1 as desired.

Note for each d | n that Yn is a finite cover of Yd, which in turn is a finite cover of
L \N(J). It follows by a transfer argument that their first Betti numbers satisfy

b1(Yn) ≥ b1(Yd) ≥ b1(L \N(J)) = 1,

so if b1(Yn) = 1 then we will have b1(Yd) = 1 for all d | n after all. Similarly, since n divides
2|H1(L)|, we conclude that if the 2|H1(L)|-fold cyclic cover of L \N(J) has b1 = 1 then we
also have b1(Yn) = 1, and hence ρ is nondegenerate. �

We now put together the various results of this section to prove Theorem 4.1.

Proof of Theorem 4.1. Proposition 4.7 says that every representation

ρ : π1(L \N(J)) → SU(2)

with ρ(µJ) = i has cyclic image. By Proposition 4.5 there are |H1(L)| such ρ. Thus, if they
are all nondegenerate, then we will have

dimCKHI (L, J) ≤ |R(J)| = |H1(L)|,

as in (4.1). In the opposite direction, we know that

|H1(L)| ≤ dimC I
#(L) ≤ dimCKHI (L, J)

by [LY20, Theorem 1.2], so equality will follow. It remains to establish the nondegeneracy of
these cyclic representations; by Proposition 4.9 it will suffice to show that the 2|H1(L)|-fold
cyclic cover of L \N(J) has first Betti number 1.

Let Y be the n-fold cyclic cover of L \N(J) ∼= Z \N(C), where n = 2|H1(L)|. We can
Dehn fill Y along a lift µ̃ of µnC to get the n-fold branched cyclic cover of C, and this Dehn
filling decreases the first Betti number by 1 since [µ̃] is a non-torsion element of H1(Y ).
(Indeed, we can lift a Seifert surface for C to Y to get a surface whose intersection pairing
with µ̃ is 1.) It thus follows that

b1(Y ) = 1 if and only if b1(Σn(Z,C)) = 0.

But a theorem of Fox [BZ03, Theorem 8.21] says that

|H1(Σn(Z,C))| =

∣∣∣∣∣
n−1∏

k=1

∆C(e
2πik/n)

∣∣∣∣∣ ,
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where Σn(Z,C) is the n-fold cyclic branched cover of C ⊂ Z. It follows that b1(Σn(Z,C)) =
0 if and only if no nontrivial nth root of unity is a zero of the Alexander polynomial ∆C(t).

We now wish to show that the cyclotomic polynomials Φd(t) do not divide ∆C(t) for all
divisors d ≥ 2 of n = 2|H1(L)|. If |H1(L)| is an odd prime power, say pe, then either

• d = 2, and Φ2(t) = 1 + t implies that Φd(1) = 2;
• d = pk with 1 ≤ k ≤ e, and then

Φpk(t) = 1 + tp
k
+ t2·p

k
+ · · ·+ t(p−1)·pk

implies that Φd(1) = p; or
• d = 2 · pk with 1 ≤ k ≤ e, and

Φ2·pk(t) = Φpk(−t) = 1− tp
k
+ t2·p

k
− · · · + t(p−1)·pk

implies that Φd(−1) = p.

Thus, if some Φd(t) divides ∆C(t) then at least one of |∆C(1)| and |∆C(−1)| will be strictly
greater than 1. But we know that ∆C(1) = 1 for all knots in homology spheres, and we
know from Lemma 4.4 that

|∆C(−1)| = |H1(Σ(Z,C))| = 1,

so we cannot have Φd(t) | ∆C(t) for any divisor d ≥ 2 of 2pe. We conclude that

b1(Σn(Z,C)) = 0,

proving the required nondegeneracy. �

5. Floer simple knots and Theorem 1.2

Recall that a knot in a lens space L is simple if it is isotopic to a union of two arcs, each
contained in a meridional disk for one of the two solid tori in a genus-1 Heegaard splitting of
L. For instance, the core of each solid torus in such a splitting is a simple knot. Moreover,
there is a unique (oriented) simple knot in every homology class in H1(L). See [Ras07, §2.1]
and Section 6 for more on simple knots.

Our main result in this section is Theorem 5.1 below. This theorem is substantially more
general than is needed for the proof of Theorem 1.2, but we will use this generality in the
next section to extend the latter theorem to additional slopes in the interval [3, 5).

Theorem 5.1. Suppose J is a primitive (oriented) knot in a lens space L such that

dimC KHI (L, J) = |H1(L)|.

Then J is rationally fibered of the same genus as the simple knot S in its homology class.
Moreover, the symmetrized Alexander polynomials of J and S agree,

∆J(t) = ∆S(t).

Finally, if

g(J) ≤
|H1(L)|+ 1

4
then J is isotopic to S.

Before proving this theorem, we use it to prove our main result, Theorem 1.2.
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Proof of Theorem 1.2. Suppose, for a contradiction, that S3
3(K) is SU(2)-abelian for some

nontrivial knot K. Proposition 3.2 implies that this surgered manifold is homeomorphic to
a branched double cover of the lens space

L = L(3, 2)

along a knot J which is homologous to 5 times a core in a genus-1 Heegaard splitting of L.
In particular, the homology class of J (with any orientation) generates

H1(L) ∼= Z/3Z

since gcd(3, 5) = 1, meaning that J ⊂ L is primitive. Its branched double cover is therefore
unique, by Lemma 4.2, so we may write

S3
3(K) ∼= Σ(L, J).

Since

|H1(Σ(L, J))| = |H1(L)| = 3,

Theorem 4.1 implies that

dimCKHI (L, J) = |H1(L)| = 3.

Then Theorem 5.1 says that J is rationally fibered and has the same genus as the simple
knot in its homology class (for any orientation on J). But each primitive simple knot in
L is homologous to, and hence isotopic to, a core of a solid torus in a genus-1 Heegaard
splitting of L, and therefore has genus 0. It follows that J has genus 0 as well. The fibered
exterior of J is then a solid torus, which implies that its branched double cover Σ(L, J) is a
lens space. But Proposition 3.2 says that S3

3(K) is not Seifert fibered, a contradiction. �

It remains to prove Theorem 5.1. Before doing so, we review some facts about instanton
knot homology and Heegaard knot Floer homology. We will assume for the discussion below
that J is a primitive knot in an irreducible rational homology sphere L with |H1(L)| = p > 1.
In particular, the complement of J is irreducible.

As in §4, we can identify L \N(J) with Z \N(C) for a knot C in some homology sphere
Z. Let

(F, ∂F ) ⊂ (L \N(J), ∂N(J))

be a genus-minimizing Seifert surface for C, so that F generates H2(L \ N(J), ∂N(J)).
Then ∂F is a Seifert longitude for C. Since

[µJ ] = |H1(L)| · [µC ] = p[µC ] ∈ H1(L \N(J))

(see §4), ∂F represents a primitive class on ∂N(J), and has algebraic intersection number
±p with the meridians of J .

Let γµ be the disjoint union of two oppositely-oriented meridians of J on ∂N(J). Then
(L \N(J), γµ) is a balanced sutured manifold, and its sutured instanton homology defines
the instanton knot homology of J ⊂ L,

KHI (L, J) := SHI (L \N(J), γµ),

as in [KM10b, Definition 7.13]. Let us arrange that ∂F intersects γµ in 2p points. Then the
construction in [LY21b, §2.3] defines an integer-valued Alexander grading on KHI (L, J),

KHI (L, J) =
⊕

i∈Z

KHI (L, J, i).
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We will review below how this Alexander grading detects genus and fiberedness, and yields
a graded Euler characteristic which agrees with that of Heegaard knot Floer homology.

Let

n :=
1

2
(p− χ(F )) = g(F ) +

p− 1

2
.

Then [LY21b, Theorem 2.30] says that

KHI (L, J, i) = 0 for |i| > n,

and that if (M±, γ±) are the sutured manifolds obtained by decomposing (L \ N(J), γµ)
along ±F , then

KHI (L, J,±n) ∼= SHI (M±, γ±).

Since L\N(J) is irreducible with toroidal boundary, and F has minimal genus and minimal
intersection with γµ, the sutured manifolds (M±, γ±) are both taut. Their sutured instanton
homologies are therefore nontrivial [KM10b, Theorem 7.12]; that is,

KHI (L, J,±n) 6= 0.

In this way, instanton knot homology detects the genus of J . Note, moreover, that M+ =
M− and γ+ = −γ−. This implies by [LY21b, Theorem 2.30] that the sutured instanton
homologies of (M±, γ±) are isomorphic,

KHI (L, J, n) ∼= KHI (L, J,−n).

The fact that

H2(L \N(J)) ∼= H2(Z \N(C)) = 0

implies that H2(M±) = 0 as well. We can thus apply [GL19, Theorem 1.2] to conclude that

dimC KHI (L, J,±n) = 1

iff (M±, γ±) are product sutured manifolds, or, equivalently, iff J is a rationally fibered knot
with fiber surface F . In this way, instanton knot homology detects whether J is rationally
fibered. Heegaard knot Floer homology detects genus and fiberedness in the same way.

There is a Z/2Z-grading on instanton knot homology which descends to a Z/2Z-grading
on each Alexander-graded summand KHI (L, J, i), so we can define the graded Euler char-
acteristic of KHI (L, J) by

χgr(KHI (L, J)) =
∑

i∈Z

χ(KHI (L, J, i)) · ti.

Recent work of Li and Ye [LY21b, Theorem 1.2] relates this with the graded Euler charac-
teristic of Heegaard knot Floer homology. Namely, they prove that

χgr(KHI (L, J)) = ±ts · χgr(ĤFK (L, J)),

for some s ∈ Z, where the latter is defined with respect to the corresponding Alexander and
Z/2Z-gradings in the Heegaard Floer setting.

Recall that

(5.1) χgr(ĤFK (L, J))t=1 = χ(ĤF (L)) = |H1(L)| = p.

Recall further that the Alexander grading on the Heegaard knot Floer homology of J can
be viewed as a grading by relative Spinc structures in Spinc(L, J). In the spectral sequence

ĤFK (L, J) =⇒ ĤF (L),
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this grading projects to the Spinc grading on the latter via the natural map

Spinc(L, J) → Spinc(L).

These sets of Spinc structures are affine spaces over the corresponding first homology groups,
and the projection map above can be identified with the quotient map

H1(L \N(J)) ∼= Z → Z/pZ ∼= H1(L).

More concretely, there is an identification Spinc(L) ∼= Z/pZ such that the spectral sequence
above restricts, for each [i] ∈ Z/pZ, to a spectral sequence

(5.2)
⊕

m≡i (mod p)

ĤFK (L, J,m) =⇒ ĤF (L, [i]).

In particular, for each [i] ∈ Z/pZ, we have

(5.3)
∑

m≡i (mod p)

χ(ĤFK (L, J,m)) = χ(ĤF (L, [i])) = 1.

The following additional constraints on the graded Euler characteristic of Heegaard knot
Floer homology will be important in our proof of Theorem 5.1.

The first lemma below is proved in [Ras07, Corollary 5.3].

Lemma 5.2. Let J1 and J2 be two homologous primitive knots in L. Then the difference

χgr(ĤFK (L, J1))− χgr(ĤFK (L, J2))

is divisible by (tp − 1)2.

The next lemma follows immediately from (5.3).

Lemma 5.3. Let J be a primitive knot in L. Then, for each [i] ∈ Z/pZ, we have that

χ(ĤFK (L, J,m)) 6= 0

for some integer m ≡ i (mod p).

The final lemma below is proved in [Ras07, Proof of Theorem 1]. We only need it for the
last claim in Theorem 5.1 in the case where g(J) > 0. We do not need it when g(J) = 0 (in
particular, we do not need it for the proof of Theorem 1.2) because we know automatically
in this case that J is a core and thus simple.

Lemma 5.4. Let J be a primitive knot in L. Recall that we have assumed that |H1(L)| = p.

Suppose in addition that dimZ/2Z ĤF (L) = p and

g(J) <
p+ 1

2
.

Then dimZ/2Z ĤFK (L, J) = p. That is, J is Heegaard Floer simple.

We may now prove Theorem 5.1.

Proof of Theorem 5.1. Let J ⊂ L be as in the hypothesis of the theorem, and let S denote
the simple knot in the same homology class as J . Simple knots admit Heegaard diagrams
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for which the knot Floer complex has trivial differential; in particular, they are Heegaard
Floer simple.3 Thus,

dimZ/2Z ĤFK (L,S) = p.

It then follows from Lemma 5.3 and (5.1) that S satisfies the property

(∗)
for each [i] ∈ Z/pZ, there is a unique integer m ≡ i (mod p) such that:

χ(ĤFK (L,S,m)) = 1, and χ(ĤFK (L,S, k)) = 0 for all other k ≡ i (mod p).

It also follows from Lemma 5.3 that

dimZ/2Z ĤFK (L,S,m) = 0 or 1

for each m ∈ Z. Similarly, Lemma 5.3 applied to J , combined with the facts that

dimCKHI (L, J) = p

and that

(5.4) χgr(KHI (L, J)) = ±ts · χgr(ĤFK (L, J))

for some s ∈ Z, implies that J also satisfies (∗), and, additionally, that

dimCKHI (L, J,m) = 0 or 1

for each m ∈ Z. In particular,

dimC KHI (L, J,±n) = 1

for

n = g(J) +
p− 1

2
,

which implies that J is rationally fibered. Since

KHI (L, J, i) = 0

for |i| > n, and likewise for the Heegaard knot Floer homology of J , and since χgr(ĤFK (L, J))
is symmetric under the substitution t 7→ t−1, this then implies that s = 0 in (5.4).

We next prove that J and S have the same genus. For this, we claim, as in [Ras07, Proof
of Theorem 2], that

(5.5) ∆J(t) := χgr(ĤFK (L, J)) = χgr(ĤFK (L,S)) =: ∆S(t).

Indeed, the fact that J and S both satisfy property (∗) means that we can write

∆S(t) =
∑

[i]∈Z/pZ

tn[i]

∆J(t) =
∑

[i]∈Z/pZ

tn[i]+p·m[i]

for some integers n[i] ≡ i (mod p) and m[i]. Since J and S are in the same homology class,

Lemma 5.2 says that (tp − 1)2 divides the difference

∆J(t)−∆S(t) =
∑

[i]∈Z/pZ

tn[i](tp·m[i] − 1).

3Simple knots are also instanton Floer simple, by [LY20]; see also [BLY20].
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However, after dividing this difference by tp − 1, we are left with
∑

[i]∈Z/pZ
m[i] 6=0

tn[i](1 + tm[i] + · · ·+ t(p−1)·m[i]).

For this sum to be divisible by another factor of tp − 1, it must have 1 as a root. But that
is only possible if the sum is trivial—that is, if m[i] = 0 for every [i] ∈ Z/pZ. This proves

that ∆J(t) = ∆S(t) as desired.

Combining (5.4) (recall that s = 0) with (5.5), we have therefore shown that

χgr(KHI (L, J)) = ±χgr(ĤFK (L,S)).

Since the instanton Floer homology of J has dimension at most 1 in each Alexander grading,
and likewise for the Heegaard knot Floer homology of S, it follows that for each integer i,

KHI (L, J, i) = 0 iff ĤFK (L,S, i) = 0.

This implies that J and S have the same genus, since the Alexander gradings in these two
theories detect genus in the same way.

For the claim about Alexander polynomials, Rasmussen proves in [Ras07, §3.7] that, for
any primitive knot J in a rational homology sphere L of order p, we have

∆J(t) = ∆J(t) ·
tp/2 − t−p/2

t1/2 − t−1/2
,

where ∆J(t) is the symmetrized Alexander polynomial of the complement L \ N(J). We
have shown above that ∆J(t) = ∆S(t), from which it follows that ∆J(t) = ∆S(t) as well.

For the last claim of the theorem, suppose

g(J) ≤
|H1(L)|+ 1

4
=
p+ 1

4
.

Then J is Heegaard Floer simple, by Lemma 5.4. Furthermore, Baker proved in [Bak06,
Theorem 1.1] that any knot J satisfying the genus bound above is a 1-bridge knot in L.
Finally, Hedden proved in [Hed11, Proposition 3.3] that any 1-bridge knot in a lens space
which is also Heegaard Floer simple is simple. Thus, J ∼= S. �

6. Other small surgeries and SU(2)

As mentioned in the introduction, we suspect that the following is true:

Conjecture 6.1. If K ⊂ S3 is a nontrivial knot, then S3
r (K) is not SU(2)-abelian for any

rational number r ∈ [0, 5).

Kronheimer–Mrowka proved this conjecture for all r ∈ [0, 2] in [KM04a]. Baldwin–Sivek
proved it in [BS19, Theorem 1.8] for the dense subset of rationals in (2, 3) given by

r = p/q ∈ (2, 3),

where p, q are coprime and p is a prime power. Indeed, they proved that if S3
r (K) is SU(2)-

abelian in this case, then K has genus 1, and is fibered and strongly quasipositive. The only
such knot, the right-handed trefoil, does not admit SU(2)-abelian surgeries in this range.
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As alluded to in §1.2, proving Conjecture 6.1 is much more difficult for the corresponding
dense subset of rationals in the interval [3, 5), given by

r = p/q ∈ [3, 5),

where p, q are coprime and p is a prime power. If S3
r (K) is SU(2)-abelian in this case, then

it is an instanton L-space, by Lemma 3.1, from which it follows that K has genus at most
2, and is fibered and strongly quasipositive [BS19]. One can rule out the trefoil, so K has
genus 2, in which case it also has the same Alexander polynomial as T2,5, by Lemma 2.2.
The difficulty is that there are infinitely many such knots; see, for example, [Mis17].

In this section, we illustrate how our techniques can be used to prove Conjecture 6.1 for
infinitely many slopes r ∈ [3, 5), culminating in the proof of Theorem 1.4.

We start with a comparatively easy case, in which the numerator of r is a power of 2,
which is handled with a trick involving a result of Klassen. In this case, we can actually
deal with all slopes less than 7.

Theorem 6.2. Let p, q be coprime positive integers with p/q < 7, where p is a power of 2.
Then S3

p/q(K) is not SU(2)-abelian for any nontrivial knot K ⊂ S3.

Proof. Suppose Y = S3
p/q(K) is SU(2)-abelian. Then it is an instanton L-space by Lemma 3.1.

It then follows from [BS19, Theorem 1.15] that

2g(K) − 1 ≤ p/q < 7,

which implies that g(K) ≤ 3. If g(K) = 1 then K is the right-handed trefoil, and Y is
Seifert fibered with base orbifold S2(2, 3,∆) where

∆ = |6q − p|.

We cannot have ∆ ≤ 1, because otherwise either p
q = 6

1 or

p

q
= 6±

1

n
=

6n ± 1

n

for some integer n ≥ 1, and in these cases p is not actually a power of 2. But then ∆ > 1
and so Y is not SU(2)-abelian [SZ19], a contradiction. Therefore, g(K) is either 2 or 3,
which then implies that p/q ≥ 3. Since p is a power of 2, it must be a multiple of 4.

Theorem 2.1 now tells us that K has Alexander polynomial

∆K(t) = t2 − t+ 1− t−1 + t−2

if g(K) = 2, whereas if g(K) = 3, then the same argument as in the proof of Lemma 2.2
(appealing to [LY21c, Theorem 1.9] as well as [KM10b, Proposition 7.16] and [BS18a,
Theorem 1.7]) says that

∆K(t) = t3 − t2 + t− 1 + t−1 − t−2 + t−3

or t3 − t2 + 1− t−2 + t−3.

In each of these cases we have

det(K) = |∆K(−1)| = 5 or 7 or 3,
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respectively. From here we argue exactly as in [BS19, Lemma 9.5]: Klassen [Kla91, Theo-
rem 10] proved that there are

det(K)− 1

2
= 2 or 3 or 1,

respectively, conjugacy classes of non-abelian representations

ρ : π1(S
3 \K) → SU(2)

with image in the binary dihedral group D∞ = {eiθ}∪{eiθj}. Let µ be a meridian of K and
λ the Seifert longitude. Following the proof of [Kla91, Theorem 10], since ρ has non-abelian
image we must have that ρ(µ) = j up to conjugacy, and hence ρ(µ4) = 1. Moreover, we
know that λ lies in the second commutator subgroup of π1(S

3 \ K); thus ρ(λ) lies in the
second commutator subgroup of D∞, and the latter is trivial, so ρ(λ) = 1. Since p is a
multiple of 4, it follows that ρ(µpλq) = 1, so ρ descends to a representation

π1(S
3
p/q(K)) → SU(2)

with non-abelian image, but we assumed Y = S3
p/q(K) is SU(2)-abelian, a contradiction. �

We next turn to the much more difficult case in which the numerator of r is an odd prime
power; this will require the full strength of the techniques in this paper. To start, we review
some facts about simple knots in lens spaces, and then study these knots in greater depth.

If A ⊂ S3 is an unknot, then the lens space L(a, b) is given in our notation by

L(a, b) = S3
a/b(A).

The standard genus-1 Heegaard splitting of this lens space is given by the union of the solid
torus exterior S3 \N(A) with the surgery solid torus. The core of each solid torus generates
the first homology of the lens space. Let S(a, b, k) denote the unique (oriented) simple knot
which is homologous to k times the core of the surgery solid torus, for some orientation of
this core.4 Note that

S(a, b, k) ∼= S(a, b, k′)

when k ≡ k′ (mod a). Moreover, S(a, a − b, k) ⊂ −L(a, b) is the orientation-reverse of the
mirror of S(a, b, k). Finally, S(a, b,±1) is isotopic to a core and therefore has genus 0.

Several of our results thus far, like Proposition 3.2, pertain to a knot J ⊂ L(p, 2q) which
is homologous to 5 times a core of the other solid torus S3 \N(A) in the genus-1 splitting
of this lens space. It is easy to check (for some orientation on J) that

[J ] = [S(p, 2q, 10q)] ∈ H1(L(p, 2q)).

Note that when p is odd, the knot S(p, 2q, 10q) is primitive if and only if gcd(p, 5) = 1.

The main theorem of this section is as follows:

Theorem 6.3. Let p and q be coprime positive integers with p/q ∈ [3, 5), where p is an odd
prime power and gcd(p, 5) = 1. If either p/q ∈ (4, 5) or

g(S(p, 2q, 10q)) ≤
p+ 1

4
,

then S3
p/q(K) is not SU(2)-abelian for any nontrivial knot K ⊂ S3.

4This simple knot is denoted by K(a, b, k) in [Ras07].
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Before proving this theorem, we establish the following proposition. In addition to helping
us prove Theorem 6.3, this proposition also provides the genera of the relevant simple knots
S(p, 2q, 10q), making it easy to apply Theorem 6.3 in practice. Indeed, we will apply this
genus formula at the end to prove Theorem 1.4.

Proposition 6.4. Let p and q be coprime positive integers with p/q ∈ [3, 6], where p is odd
and gcd(p, 5) = 1. Then the branched double cover of

S = S(p, 2q, 10q) ⊂ L(p, 2q) = L

is Seifert fibered with

|H1(Σ(L,S))| =

{
p, p/q ∈ [3, 4)

5p, p/q ∈ (4, 6).

Moreover, this primitive simple knot has genus

g(S) =
∣∣ |4p − 10min{2q, p − 2q}| − 2

∣∣.

Proof. Let a, b be coprime positive integers with b/a ∈ [1/3, 2/3] and gcd(a, 5) = 1; eventu-
ally we will take (a, b) = (p, 2q). We will attempt to understand the branched double cover
and genus of the primitive simple knot

S(a, b, 5b) ⊂ L(a, b).

Without loss of generality, we can assume that

b/a ∈ [1/3, 1/2]

Indeed, if b/a ∈ [1/2, 2/3] then (a−b)/a ∈ [1/3, 1/2], and we can just consider S(a, a−b, 5b)
instead, as it is the orientation-reverse of the mirror of S(a, b, 5b).

In [Ye20, §8], Ye determines when a simple knot in L(a, b) is isotopic to a torus knot on
the Heegaard torus in the genus-1 splitting of the lens space. More precisely, let us think of
L(a, b) as obtained via (a/b)-surgery on the unknot A ⊂ S3, with genus-1 Heegaard splitting
given by the union of

Hα = S3 \N(A)

with the surgery solid torus Hβ, as above. In particular, the meridian of Hβ is glued along
the curve aµ+ bλ, with respect to a meridian µ and Seifert longitude λ of A on ∂Hα, with
µ · λ = −1. Let

Σ = ∂Hα = −∂Hβ

be the Heegaard torus in this splitting. Let T be the (5, 2)-torus knot on Σ—that is, the
simple closed curve on Σ which is homologous in Σ to 5µ+2λ. Since b/a ∈ [1/2, 1/3], [Ye20,
Theorem 8.2] says that

S(a, b, 5b) ∼= T.

Indeed, following the discussion above, it is easy to see that

[S(a, b, 5b)] = [T ] ∈ H1(L(a, b)),

so it suffices to show that T is simple. The basic idea behind Ye’s result, inspired by [GLV18,
§3.1], is that if we fix a Heegaard diagram (Σ, α, β) for the Heegaard splitting

L(a, b) = Hα ∪Σ −Hβ

where α is homologous to λ and β is homologous to aµ+bλ, then the slope 5/2 is sufficiently
close to a/b in this case that we can represent T as the union of an arc in β with an arc in
α. Thus, T is simple.
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Our goals are then to show that the branched double cover of T is Seifert fibered, compute
its genus, and compute the order of its branched double cover.

For the former, note that one can Seifert fiber the solid tori Hα and Hβ so that T is
a regular fiber in both. These glue to give a Seifert fibration of L(a, b) with two singular
fibers in which T is a regular fiber. The complement of a neighborhood of T is thus Seifert
fibered, so the double cover of this complement is as well (each circle fiber lifts to one or
two circles). The Seifert fibration on this double cover then extends across the solid torus
we glue in to form the branched double cover of T . (This is the same reasoning that shows
that torus knots in S3 have Seifert fibered branched double covers.)

We turn next to the genus calculation. The knot Floer homology of T , and therefore the
genus of this knot, is determined by its graded Euler characteristic since simple knots are
Floer simple. Let L = L(a, b). Following Rasmussen in [Ras07, §3.7], we have that

χgr(ĤFK (L, T )) = ∆T (t) ·
ta/2 − t−a/2

t1/2 − t−1/2
,

where ∆T (t) is the symmetrized Alexander polynomial of T . Letting deg(∆T (t)) denote the
top degree of this Laurent polynomial, it follows that the top non-zero Alexander grading

of ĤFK (L, T ) is given by

deg(∆T (t)) +
a− 1

2
.

On the other hand, from the discussion in the previous section, this top Alexander grading
is also given by

g(T ) +
a− 1

2
.

Therefore,

g(T ) = deg(∆T (t)).

It thus suffices to compute this Alexander polynomial.

The Alexander polynomial ∆T (t) can be computed via Fox calculus, from a presentation
of the fundamental group of L\N(T ), as described in [Ras07, §3.7]. One finds a 2-generator,
1-relator presentation of this group using Seifert–Van Kampen, exactly as for torus knots in
S3. Namely, the complement of T is obtained by gluing the solid tori Hα and Hβ together
along the annulus on Σ given by

C = Σ \N(T ).

Let x and y be the homotopy classes of the cores of Hα and Hβ, respectively. The core of C

is homotopic to x5 in π1(Hα) and y
d in π1(Hβ) (for some orientation of these cores), where

d = |∆(5/2, a/b)| = |2a− 5b|.

Therefore, we have a presentation

π1(L \N(T )) = 〈x, y | x5 = yd〉.

This is the same as the fundamental group of the complement of the torus knot

T5,d ⊂ S3,

so Fox calculus tells us that ∆T (t) agrees with the Alexander polynomial of this torus knot.
In particular,

g(T ) = deg(∆T (t)) = deg(∆T5,d(t)) = |2(d − 1)| =
∣∣ |4a− 10b| − 2

∣∣.
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Recall that if b/a ∈ [1/2, 2/3] then we replace b with a− b in this formula. In other words,
we have that

g(S(a, b, 5b)) =
∣∣ |4a− 10min{b, a− b}| − 2

∣∣.
If p, q are as in the hypotheses of this proposition, then letting a = p and b = 2q yields the
desired genus formula. (Note that p and 2q are coprime, since p and q are and p is odd.)

Finally, we compute the order of the branched double cover of

S = S(p, 2q, 10q) ⊂ L(p, 2q) = L,

where p and q are as in the hypothesis of the proposition. By Lemma 4.4, we have that

(6.1) |H1(Σ(L,S))| = p · |∆S(−1)|.

Recall that
∆S(t) = ∆T5,d(t),

for some d, as explained above. If p/q ∈ [3, 4), then 2q/p ∈ (1/2, 2/3], and

d = |2p − 5(p − 2q)| = |10q − 3p|

is odd since p is odd. In this case, an easy calculation shows that |∆T5,d(−1)| = 1, which
implies that |H1(Σ(L,S))| = p by (6.1). If p/q ∈ (4, 6) instead, then 2q/p ∈ (1/3, 1/2), and

d = |2p − 10q|

is even. In this case, |∆T5,d(−1)| = 5, and therefore |H1(Σ(L,S))| = 5p. �

We remark that the formula for g(S(p, 2q, 10q)) from Proposition 6.4 can be simplified
for various values of p/q, as follows:

(6.2) g(S(p, 2q, 10q)) =





20q − 6p − 2, 3 ≤ p/q < 10/3

6p− 20q − 2, 10/3 < p/q < 4

20q − 4p − 2, 4 < p/q < 5

4p− 20q − 2, 5 < p/q ≤ 6

We have omitted the cases p/q = 10/3, 4, 5 above because of the requirement that p be odd
and not a multiple of 5.

Proof of Theorem 6.3. Suppose Y = S3
p/q(K) is SU(2)-abelian for p and q as in the theorem.

Proposition 3.2 implies that
Y ∼= Σ(L, J)

for some primitive knot J in the lens space L = L(p, 2q), where J (for some orientation) is
homologous to the simple knot

S = S(p, 2q, 10q),

as described above. Proposition 3.2 also implies that Y is not Seifert fibered. From here,
Theorem 4.1 tells us that

dimC KHI (L, J) = |H1(L)|,

and so Theorem 5.1 implies that ∆J(t) = ∆S(t) and g(J) = g(S).

If p/q ∈ (4, 5), then

|H1(Σ(L, J))| = p · |∆J(−1)| = p · |∆S(−1)| = |H1(Σ(L,S))|,

by Lemma 4.4. But the latter order is 5p, by Proposition 6.4. This is a contradiction, since
Y = Σ(L, J) has order p first homology, as (p/q)-surgery on a knot in S3.
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Finally, if

g(S) ≤
p+ 1

4
,

then the same is true of the genus of J , in which case J is isotopic to S, by Theorem 5.1.
But then Y ∼= Σ(L, J) ∼= Σ(L,S) is Seifert fibered, by Proposition 6.4, a contradiction. �

Finally, we combine Theorems 6.2 and 6.3 and Proposition 6.4 to prove Theorem 1.4.

Proof of Theorem 1.4. Let p and q be coprime positive integers with p/q ∈ [3, 7), where p
is a prime power, as in the hypothesis of the theorem, and let K ⊂ S3 be a nontrivial knot.
We know that

Y = S3
p/q(K)

is not SU(2)-abelian when p is even, by Theorem 6.2.

Suppose now that p is odd with gcd(p, 5) = 1. Let us assume first that p/q ∈ [4, 5). Then
Theorem 6.3 says that Y is not SU(2)-abelian. Next, assume that p/q ∈ [3, 4) and

23p− 9 ≤ 80q ≤ 25p + 9.

These inequalities are equivalent to the statement that both 20q − 6p− 2 and 6p− 20q − 2
are at most (p+ 1)/4. Thus,

g(S(p, 2q, 10q)) ≤
p+ 1

4
,

by (6.2). Therefore, Theorem 6.3 says that Y is not SU(2)-abelian. �
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